Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-36004005

RESUMEN

Human retinal pigment epithelium RPE-1 cells are immortalized diploid wild-type cells. RPE-1 is increasingly used for studies of spindle assembly dynamics and chromosome segregation. Here, we imaged living RPE-1 cells using the spinning disk confocal microscope and report their complete spindle assembly dynamic parameters. Live-cell experiments enabled ascribing precise timing of function of the kinesin-5 Eg5 and kinesin-14 HSET throughout different phases of mitosis. Eg5 functions at prophase and metaphase, to assemble and maintain spindle bipolarity, respectively. Eg5 inhibition results in spindle collapse during prophase and metaphase, resulting in monoastral/monopolar spindles. HSET functions throughout mitosis to maintain spindle length. HSET degradation results in shorter spindles through all phases of mitosis. Double-inhibition of Eg5 and HSET produces only monoastral/monopolar spindles, indicating that Eg5 and HSET may not be antagonistic in wild-type RPE-1 cells, contrary to previous studies using cancer cells. In the context of spindle assembly, our results highlight potential important differences between RPE-1 and other cancer-derived cell lines.

2.
MicroPubl Biol ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34514356

RESUMEN

Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome. Holocentric cells, such as found in the silkworm, in contrast, have multiple kinetochore structures per chromosome. Interestingly, some human cancer chromosomes contain more than one kinetochore, a condition called di- and tricentric. Thus, comparing how wild-type mono- and holocentric cells perform mitosis may provide novel insights into cancer di- and tricentric cell mitosis. We present here live-cell imaging of human RPE1 and silkworm BmN4 cells, revealing striking differences in spindle architecture and dynamics, and highlighting differential kinesin function between mono- and holocentric cells.

3.
J Cell Sci ; 133(11)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32327557

RESUMEN

To segregate the chromosomes faithfully during cell division, cells assemble a spindle that captures the kinetochores and pulls them towards opposite poles. Proper spindle function requires correct interplay between microtubule motors and non-motor proteins. Defects in spindle assembly or changes in spindle dynamics are associated with diseases, such as cancer or developmental disorders. Here, we compared mitotic and meiotic spindles in fission yeast. We show that, even though mitotic and meiotic spindles underwent the typical three phases of spindle elongation, they have distinct features. We found that the relative concentration of the kinesin-14 family protein Pkl1 is decreased in meiosis I compared to mitosis, while the concentration of the kinesin-5 family protein Cut7 remains constant. We identified the second kinesin-14 family protein Klp2 and microtubule dynamics as factors necessary for proper meiotic spindle assembly. This work defines the differences between mitotic and meiotic spindles in fission yeast Schizosaccharomyces pombe, and provides prospect for future comparative studies.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático
4.
Nat Commun ; 8: 15286, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513584

RESUMEN

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Simulación por Computador , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Método de Montecarlo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo
5.
Nat Commun ; 6: 7322, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031557

RESUMEN

Aneuploidy-chromosome instability leading to incorrect chromosome number in dividing cells-can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring or cytokinesis. As most tumours show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research, to provide potential therapeutics. Here we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus-end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Cromosomas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Polos del Huso/metabolismo , Segregación Cromosómica , Schizosaccharomyces , Huso Acromático
6.
J Cell Biol ; 209(1): 47-58, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25869666

RESUMEN

Microtubules (MTs) and associated motors play a central role in nuclear migration, which is crucial for diverse biological functions including cell division, polarity, and sexual reproduction. In this paper, we report a dual mechanism underlying nuclear congression during fission yeast karyogamy upon mating of haploid cells. Using microfluidic chambers for long-term imaging, we captured the precise timing of nuclear congression and identified two minus end-directed motors operating in parallel in this process. Kinesin-14 Klp2 associated with MTs may cross-link and slide antiparallel MTs emanating from the two nuclei, whereas dynein accumulating at spindle pole bodies (SPBs) may pull MTs nucleated from the opposite SPB. Klp2-dependent nuclear congression proceeds at constant speed, whereas dynein accumulation results in an increase of nuclear velocity over time. Surprisingly, the light intermediate chain Dli1, but not dynactin, is required for this previously unknown function of dynein. We conclude that efficient nuclear congression depends on the cooperation of two minus end-directed motors.


Asunto(s)
Núcleo Celular/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte de Proteínas , Schizosaccharomyces/ultraestructura
7.
Proc Natl Acad Sci U S A ; 111(50): 17899-904, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25422470

RESUMEN

Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips. Through genetic analysis, we place Knk1 into a novel pathway controlling cell shape independently of MTs and Tea1. Knk1 localizes at cell tips. Its localization is mediated by the Knk1 N terminus and is enhanced upon ATP binding to the C-terminal ATPase domain. Furthermore, Knk1 tip recruitment is regulated by SRC-like adaptor 2 (Sla2) and cell division cycle 42 (Cdc42) independently of Sla2's role in endocytosis. Finally, we discovered that Knk1 shows an anticorrelated oscillatory behavior between the two cell tips at a periodicity that is different from the reported oscillatory Cdc42 dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Morfogénesis/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Transducción de Señal/genética , Relojes Biológicos/genética , Western Blotting , Biología Computacional , Microscopía Fluorescente , Microtúbulos/metabolismo , Morfogénesis/fisiología , Schizosaccharomyces/crecimiento & desarrollo
8.
Mol Biol Cell ; 25(24): 3900-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25253718

RESUMEN

Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms, such as the spindle assembly checkpoint and centromere positioning, further help to ensure complete segregation fidelity. Here we present the fission yeast csi2+. csi2p localizes to the spindle poles, where it regulates mitotic microtubule dynamics, bipolar spindle formation, and subsequent chromosome segregation. csi2 deletion (csi2Δ) results in abnormally long mitotic microtubules, high rate of transient monopolar spindles, and subsequent high rate of chromosome segregation defects. Because csi2Δ has multiple phenotypes, it enables estimates of the relative contribution of the different mechanisms to the overall chromosome segregation process. Centromere positioning, microtubule dynamics, and bipolar spindle formation can all contribute to chromosome segregation. However, the major determinant of chromosome segregation defects in fission yeast may be microtubule dynamic defects.


Asunto(s)
Segregación Cromosómica , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Centrómero/metabolismo , Cinética , Cinetocoros/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático/genética , Imagen de Lapso de Tiempo
9.
Cytoskeleton (Hoboken) ; 69(11): 957-72, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23125194

RESUMEN

Single cell morphogenesis results from a balance of forces involving internal pressure (also called turgor pressure in plants and fungi) and the plastic and dynamic outer shell of the cell. Dominated by the cell wall in plants and fungi, mechanical properties of the outer shell of animal cells arise from the cell cortex, which is mostly composed of the plasma membrane (and membrane proteins) and the underlying meshwork of actin filaments and myosin motors (and associated proteins). In this review, following Bray and White [1988; Science 239:883-889], we draw a parallel between the regulation of the cell cortex during cell division and cell migration in animal cells. Starting from the similarities in shape changes and underlying mechanical properties, we further propose that the analogy between cell division and cell migration might run deeper, down to the basic molecular mechanisms driving cell cortex remodeling. We focus our attention on how an heterogeneous and dynamic cortex can be generated to allow cell shape changes while preserving cell integrity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , División Celular/fisiología , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Proteínas de la Membrana/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/genética , Animales , Membrana Celular/genética , Forma de la Célula/fisiología , Humanos , Proteínas de la Membrana/genética , Miosinas/genética
10.
Curr Biol ; 22(18): 1681-7, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22902755

RESUMEN

Microtubules (MTs) polymerize via net addition of GTP-tubulin subunits to the MT plus end, which subsequently hydrolyze to GDP-tubulin in the MT lattice. Relatively stable GTP-tubulin subunits create a "GTP cap" at the growing MT plus end that suppresses catastrophe. To understand MT assembly regulation, we need to understand GTP hydrolysis reaction kinetics and the GTP cap size. In vitro, the GTP cap has been estimated to be as small as one layer (13 subunits) or as large as 100-200 subunits. GTP cap size estimates in vivo have not yet been reported. Using EB1-EGFP as a marker for GTP-tubulin in epithelial cells, we find on average (1) 270 EB1 dimers bound to growing MT plus ends, and (2) a GTP cap size of ∼750 tubulin subunits. Thus, in vivo, the GTP cap is far larger than previous estimates in vitro, and ∼60-fold larger than a single layer cap. We also find that the tail of a large GTP cap promotes MT rescue and suppresses shortening. We speculate that a large GTP cap provides a locally concentrated scaffold for tip-tracking proteins and confers persistence to assembly in the face of physical barriers such as the cell cortex.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA